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ABSTRIACT

Thliis paper dlescribes thc applic atlonl of a neural comt putationial network mtodel to the pattern recog-

it iju and cailtoll of anro(Iv ii particle size distributions associated with a number of environmiental,

- bacterial, and art ificial aerosols. 'I'lie aerodviiaiic particle size dist ributions are measuired in real-timen with

Ii gill resolution using a two-s1 ot li-elaser velocinuet er. 'I'lie t ccli ique emiployedI here for t li recognitionl

aii c assificat ion of aerosols of iunk nowni orig-il is based onl a t Iire'- layered fictiral network thiat ha;s been

raitied onl a t raining seo consisting of 75 particle size distributions obtained from three distinct type(s of

aerosols. 'Ile' trainiung of' tlie neural nietwork was arcoi pl islied with the back-propagation learninig algo-

r th Thi [le etrec ts of the niutmber of processing uinits inI lie hiidden laver and1 the level of noise corruptintg

II training set, tie test set , and the c'onnectioni weights onl the learning rate and classification dfIic icicy of

lhe neural net work art, st udied. 'Tle abhilit y of the traiiied network to generalize froin the fi ite nmber of

SIZe distributions inI the traiinig set to iunkiiowii size dist ributions obtained from uiicertamii mid~ uiifamiiliair

enTVironments is i evest iga tte~l. '['lie a pproach offe~rs the op~portuni ty of recogniizinhg, claissifyi hg, anid cliarac-

irizi ug aerosol particles ini real-timie accordinig to their aerodyiiainic particle size spectrum and Its high

r cogiit ion accuracy shows considerable proniise for applications to rap~id real-time air mon itoriing inI thle

areas of OeC ti patiOn al heCalth anld air polluition standlardls.
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EXECUTIVE SUMMARY

lit recent yers, the mnilitary's concern with the vitem~y utse or classical biological agen Its as wellI as

I li newly elnerginlg mid-spectrii Ii agents (which wvill all be dhissemihlnated as solid aerosols) has led, to COjL.iI

eri;lhe r4'soarel efforts in Lte developmienit of acrosol detectors and sensors capale of rapidlly i(ntifjilg and

classifying patihogenic aerosols. lThis paper analyzes and develops a relatively new approach to thle 'kilptive

recognitionl anid classificat loil of valis types of enviroinmental, bacterial and -artificial acrosols that ~Is based

onl an iiitegratcd mieasuremient and compul~ltation~al environment involving the use or an Aerodynamic Particle

Size \nial vzvr for Lte real-tI Im e and high r( sohiition measurement of aerodynamic particle size (listLribu Lions

intevrfaced withk a feed-forward neural network for the adaptive pattern recognitioni and classiricationi of tlc

Observed paicle size spectra. TFheie nral network is a computational paradigm based onl the concept that

a sively p~arallel network of eloelntal processors (i .e., artificial lieurall units) arranged in a man ner rein-

inliscenit. of biological neural nets mlight. be able to learn to recognize and~ clasisify patterns in ant auiton~omlous

m~anne11r.

Ill I his paper, it. is shlown I flat a fully inlterconnlected three-layered nleural n~etwork (48 input, neurouns1

Ivariabile illinblir of hidden nieuron", and *2 output neurons) withl noniline'ar sigllloidl units for thlreshld~inlg

can be trained with the standard back-prolpagation learning algorithm using a training set consisting of 25

tarticle size distribution funict ions from each of three classes of aerosols (one atmospheric and twoi latex

particle stanidards). It was found that a recognition rate of 100 percent can be obtained for the1 training set

using neural networks with three or imore hidden neurons. I',xperiments conducted to study the pcrfornmnce

chiaract eristics of the neural network as a fu nction of Lte quality of data, used for Lte training and test sets

anid of inclsionl of random noise ill Ihe conniection strengths of the trained tietwvork showed that. the neural

net work call func1Wtion as a very 'an It- toleraii t patternl recogn itionl and classi ficationi systemi. Fu rtier Ilore, it

wa shown thlat. a fully trained ileliral network can be used to form reliable generalizations to particle size

dist ributionls that it has never "seen". lIn this regard, it was; demonstrated that the trai iicd nietwork was

l-lpboof grouiping particle size dlistribuitions of un iknown type into simiilar categories for Lte case where tie

ilmnhier of cluster categories was unknlown a prior-i.

AlIthoughi thle present work has focussed exclusively oil Lte coulpling of the neuiral network paradigml

to all iAerodvnaiiic Particle Size!r for aerosol idenitification , it only reprcmsents bi olle possibhility for Lt(e

recogiiitioll and classification of aerosols. It would be desirable to investigate the coupling or adaptive

patternl recognlitionl al(I classiticationl systems based on neural networks (implemented either as sof'tware

11111 lations or as electronlic anid/or optical hardware) withl detection methlods thlat provide ant opti mum

siji1sitivit y anld speci licity for tile detection01 aiind quantitative evaluation of the chlemical or biological ageint..

lit this regatrd, it might be useful to inlvestigate tile application of neural networks to Lte adaptive recognition

and classification of Chemical agents (vapors) and of biological agents (biological components in aerosols)

based onl ioul no1bility spectromnetry aiid pyrolysis mass spectrometry, respectively.
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I. INTRODUCTION

The extraction of features from patterns and waveforms is important in a number of pattern

recognition applications spanning a range of different scientific disciplines such as image and scene analysis,

computer vision, speech and character recognition, biological taxonomy and medica! diagnosis, radar and

sonar target recognition and classification, robotics and remote manipulators, and seismic data analysis. The

design of an optiial classifier for these patterns and waveforms invariably requires knowledge '' he st 2 t ;st jc

of the signal and noise processes and, with regard to the latter aspect, the performance of the classifer is

dependent on how well these statistics have been characterized. However, in most practical applications,

the statistics of the signal and noise processes are either not knc,vn or have been wrongly assumed to

possess certain characteristics. Uncertainties, introduced as the result of unknown noise processes and/or
ignorance of the processes and systems generating the waveforms and patterns, require the development,

of new pattern recognition methods aid, in this rpgard, the self-organizational and perceptual capabilities

displayed by artificial neural network architectures offer considerable promise.

The artificial neural network, largely inspired by developments in neurobiology, is a con, pu tational

paradigm which consists of a network of parallel distributed processing units (i.e., nomirons) which are inter-

connected to one another according to some prescribed topology. Research into arlificial nemi ral networks

dates hack to the seminal work of McCulloch and Pitts [1] in the 1940s and to the development of early

two-layered neuronal models in the 1950s and 1960s, such as the PERCEPTON proposed by lioseitlatt

[2] and the ADALINE developed by WVidrow [3]. However, interest in neural network research waned in the

1970s after Minsky and Papert [,4] demonstrated the limitations and restrictions inherent in all the early

two-layered neuronal models. Recently, there has been a resurgence of interest in neural network paradigms

and connectionist architectures. This renewed interest has largely been engendered as the result of certain

theoretical developments in neural network models and of advances in VLSI technology for the construction

and implementation of massively parallel computational architectures [5,6].

The present study applies a neural network computational model to the recognition and classi-

fication of environmental (i.e., natural), bacterial, aid artificial aerosols on tile basis of the aerodynamic

particle size distribution. Typical measurenients of tie aerosol size distributions of atmospheric aerosols

wit h an Aerodynaniic P)article Size analyzer indicate that, there is a considerable variability in the shape of

th, partile size spectrum of natiral aerosols over a givein interval of tinue and it is this wotutral temiporal

variability in shape that makes it difficult to discriminate airborne containiation froin nat.iral aeros(,Is using

converntiona pattern recognition techniiques. With regard to the latter )oit., the detectioni arid classilication

of sources of contamination from chaitges in the shape of the background aerosol size distribution is an

important prucess in the adequate assessment of the safety of the environment,. Indeed, within the fields of

applied and environmental biology, of air quality monitoring, and of toxicological research, the health effects
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posed by airborne industrial, bacterial and viral particles depend critically on the ability t, 1ecognize, char-

acterize, and classify these particles oil the basis of their particle size distribution function. In this paper,

we demonstrate how a neural netwcrk model may be applied to recognize and classify the complex shapes

of particle size distributions of a number of environmental, biological, and artificial aerosols assuming an

ignorance of the structural information of the underlying processes generating the aerosols.

The paper is organized as follows. In Section II, a brief description is provided of the architecture of

Ihe neural network model used in the present study. Then, in Section IfI, we review briefly the mathematical

formulation of the back-propagation lwarning algorithm that is utilized to train the network. In Section IV,

we, desc ribe the aerosol particle size dist ribution data and the construction of the training and test data sets.

'otiter simulation results and experiments relating to various aspects of network training, classification

performance, fault-tolerance and generalization are presented in Section V. Finally, we discuss our findings

and draw some conclusions in Section VI.

II. DESCRIPTION OF NETWORK ARCHITECTURE

The architecture of the neural network used in the present study is illustrated in Fig. 1. The

neural network model is essentially a directed graph of processing units or artificial neurons organized into

three layers. The input layer of the network consists of 48 neurons-each neuron is associated with one of

the 48 aerodynamic particle diameter channels which span the range from 0.5 to 15 jim. Indeed, during

normal operation, each of the neurons of the input layer is externally forced or "clamped" to the value of

the input aerosol size distribution in a particular particle diameter channel. In this respect, the values of

the input neurons are proportional to the probability that the aerosol particle size lies within the particular

size, interval.

The output layer of the neural network consists of two neurons whose particular state is used to

encode the class of the aerosol size distribution. In the present application, the neuron output responses (0,1)

and (1,0) are used to represent artificial spherical monodisperse aerosols composed of polystyrene spherical

latex particles of I- and 3-jim diameters, respectively, whereas the output response (1,1) is used to represent

natural (atmospheric) aerosol size distributions. Consequently, each of the possible classes of aerosol size

distributions is represented by a particular combination of responses of the output neurons. The input

neurons are connected to the output neurons through an intervening layer of hidden neurons by a set of

connections with adjustable (i.e., adaptive) weights. The connection weights between neurons in the input

MiI biddvn layers and the hidden and output layers can be "tuned" by a learning algorithm in order to encode

the structural features and higher-order correlations in the input patterns (i.e., aerosol size distributions)

that are useful for the detection, identification, and classification of the input. These weights can have both

positive and negative values and correspond, respectively, to excitatory and inhibitory connections between

the neurons. Finally, it should b,; noted that the neural network shown in Fig. 1 is feedforward in the sense
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that the signal flow in the connections of the network proceeds unidirectionally from the input to the hidden

layer and from the hidden to the output layer. In other words, the output of a neuron in a given layer is

only connected to the input of the neurons in the subsequent laycr.

The structure of a single processing unit or neuron is illustrated in Fig. 2. The output of the

i-th neuron is obtained by first computing the weighted sum of the inputs to the neurons according to the

prescription

Si = _Wijpj, (I)

where p, denotes the output of the j-th neuron and wij denotes the weight (i.e., interconnection strength)

associated with the connection of the output of the j-th neuron to the input of the i-th neuron. The

summation in Eq. (1) i- over all the inputs to the i-th neuron. The summed output Si is subsequently

subjected to a monotonic signoidal transformation which provides a graded response between 0 (miniiiuin)

and I (maximum). Consequently, the output of the i-th neuron is given by

1

Pi= 1 + exp(-7(S + SO))' (2)

where S, is the threshold or bias for the i-th neuron and y is the gain of the sigmoid function. The effect of

S0 is to shift the signioid function to the left (S9 > 0) or right (S °0 < 0) along the horizontal axis, and tle

effect of j is to modify the shape of the signioid. The sigmoid function with gain 7 = i and shift Sc = 0 is

displayed in Fig. 3, where X =_ Si an(] Y = pi. It is important to note that the soft-limiting siginoid function

serves a threshold device (activation function) for the processing unit and, in this sense, can be considered to

be an approximation of the hard-limiting signum function used in some of the early neural network models.

However, unlike the signum function, the signoid function possesses the necessary differentiability for the

application of the back-propagation learning algorithm used for training the neural network.

III. BACK-PROPAGATION LEARNING ALGORITHM

The use of a neural network model consists of two basic phases: (1) a training phase and (2)

an operational phdse. The primary purpose of the training phase is to encode the features of the input

patterns presented to the neural network through the proper selection of the interconnection strengths or

weights u,j between the various neurons of the network. To this purpose, a supervised gradient-descent

learning scheme known as the back-propagation learning algorithm is utilized to train the neural network

model. The back-propagation learning algorithm was developed by Rumelhart cl. al. [7] and is, in esseuce,

a generalization of the Widrow-Iloff LMS (least mean square) algorithm [8,9] that was originally formulated

for adaptive signal processing.

,THie back-propagation learning algorithin is a gradient-descent algorithin in we'iglt, space whereby

the output error signals are propagated back through the network in order to niodify tlic weighis i lhe
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direction that results in the largest reduction in the error. Application of the back-propagation rule to the

training of a neural network involves two passes through the network. In the forward pass, -. given training

patte:n from the training set is presented to the input layer of the network. The signal- generated in

the network by the given training pattern, are propagated forwards through the various neurons and their

connections according to Eqs. (1) and (2) to produce a response in the neurons of the output layer. In

the backward pass, the product of the discrepancy between the observed and desired output responses and

the derivative of the threshold (sigmoid) function is propagated in reverse through the connections of the

network with the objective of modifying those weights that had a large effect on the output response more

than those that did not.

More specifically, the error signal 6i in the i-th output neuron is calculated according to the

prescription

b, = (ti - Pi) 0"(si), (3)

where Pi denotes the response of the i-th output neuron, ti denotes the desired (i.e., target) response of the

i-th output neuron, and 0'- denotes the first derivative of the threshold function. This output error signal

is then back-propagated to the hidden layer where the hidden error signal 6* for the i-th hidden neuron is

computed as follows:

6i =E~j~j07,Si),(4)

where wij is the weight associated with the connection from the i-th hidden neuron to the j-thi output

neuron. Obviously, the summation over j in Eq. (4) is over all neurons of the output layer.

With the calculation of the error signals as per Eqs. (3) and (4), the connection weight tvi between

the i-th hidden neuron and the j-th output neuron is modified according to the prescription

Awij(k) = Y((1 - p)6jpi + pAwij(k - 1)), (6)

where A denotes the "change in", 7i is the learning rate parameter that governs the speed of convergence of

lie algorithm, p is the smoothing parameter (p e [0, 1]), and p, is the response of the i-th hidden neuron. The

index k in Eq. (6) denotes the number of the iteration cycle. Similarly, the weight change in the connection

between the i-th input neuron and the j-th hidden neuron is given by

Aw, (k) = 7((i - p)6,p, + pAwj(k - 1), (7)

where pi is the response of the i-th input neuron. It should be noted that the smoothing parameter p

serves to suppress oscillations in the weight changes, thus permitting the use of larger values for the learning

rate parameter T1. In addition to the weights wi , the thresholds S? also need to be determined. With

regard to this point, it is important to note that these threshold parameters can be determined with the

back-propagation learning algorithm in exactly the same manner as for the connection weights. It is only
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necessary to imagine the thresholds S," as the weights from neurons that always have output values of unity.

In practice, the elements ot the training set are cycled through the neural network antid th, connection

strengths and thresholds are adaptiv,ly adjusted with tile back-propagation learn inig algorithl unil the

discrepancies between all the observed and desired out put responses are reduced to below some prescribed

tolerance for all the input patterns of the training set.

IV. AEROSOL SIZE DISTIIBIfUTION DATA

The data sets used for the present investigation are constructed from aerodynamic particle size

,ttribution functions (PISDFs) obtained from 11 different aerosol populations. The lSI)l's were ti,asurd

with an Aerodynamic Particle Sizer (APS), Model 331 ( I'SI Incorporated) which determines the aorolyN-

narnic diameter of individual aerosol particles by measuring the transit time of tihe particles l etweeti two

spots generated by a laser velociieter that employs a polarized 2-mW lile-Ne laser as the light source. The

APS brings the aerosol sample into at outer accelerating orifice and focuses the sampled aerosol into an inner

nozzle which directs the individual particles through a dual-beant laser formed by splitting a focused la.ser

beam on the basis of polarization using a calcite plate. The beams are then focused using a cylindrical lens

to produce two flat beams of rectangular cross-section just downstream of the nozzle orifice. As the aerosol

particle passes through these two beams, it triggers a pair of elect rical pulses whose temporal separation is

accurately measured using a high-speed digital clock. A ,iiulti-channel acumulator (\(A) is used to record

the transit tilnes o all tile aerosol particles and, at the end of a prescrib.d salmpliiig t i11,, a tiicroeoititlpler

reads each channel of the MCA, translates the channel numbers to aerodytiaric ;particle sizes, and displays

the information as a histogram consisting of 48 size intervals (i.e., bins) spanning the 0.5- 15 im aerosol

diameter range.

The aerosol size distributions utilized in the study were obtained from artificial, environmental, and

biological (i.e., bacterial) aerosols. All the aerosols considered were non-volatile under ambient conditions.

The size distributions were classified into 11 ci-Legories depending ott the source of the aerosol particles

generating the distribution. Integer values of 1 through II were assigned to these categories for convenient

reference. A summary of the aerosol size distribution category notation is found in Table I and a brief

des iption follows. Particle size distributions 1 and 2 correspond to spherical monodisperse polystyrene

latex (PSI,) particles at nominal I- and 3-pin diameters and geometric standard deviations (a_) of 1.035

and 1.02, respectively. Particle size distribution 3 corresponds to atmospheric aerosols (i.e., background)

composed of a population of aerosol particles of both natural and athropogenic origin suspended ini the

atmosphere. A mixture of equal proportions of I- and 3-tm PSL particles, of I-pin PSI, particles and

atmospheric aerosols, of 3-p n PSI, particles ai-t] atmospheric aerosols and, of I-, : -plli PS1, parlicles anud

at mospheric aerosols provide particle size distrihutions 4, 5, i, and 7, respectively. IParticle size (list riit ion

8 coincides with 0.6-pin PSL particles with a geometric standard deviation of 1.05. Vinally, particle size
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lr.'t-1 but ions 9), 1t), and~ 11 correspond~ to viable rod-shaped aerosolized bacteria Er-winia hierbicola (Ell)

2 5 x 0.5 Inm), itive Baillrs subblis rar. globzgii (13IG) (1.5 x 0.5 jim) and -clean" Bacilhis sribtilus

"i17'. glotigit (1.5 x 0.5 jim). respectively. The latter b~acterial particle-, were obtained fromn the native 13G

by wash inrg once withI rut rap ure watcr followed by cen trifugat ion. Th'le Eli and fIG pre-- ide examples of

long-roil and short -rod inlirogerieous bacterial cells, respecti~ ely. Furthermore, it should be noted that Ell

anl IG were aerosolized in the form of liquid suispensions of vegetative cells and spores, respectively, and

these pairticles were found to be almost completely dehydrated within a few seconds after aerosolization.

All the aerosol size dist ribu tions measuired were normalized to take values between 0 and 'before

Il,. %v ueised ;Ls input to lie neural network. Particle size distribution-, I, 2, and 3 were used to train and

1-tIlw irot work. 1o thIis liurpotse, (he PI'S III in ach of thlese( thIree classes were divided equally to form

I. t. ,is* , set of 25 I SD l's were ranrionrl selected fromn each of thle thIiree classes to fo. i the training set

I . Ili, trainling Set eirtsof 25 l t SIA's fronti each of the three claLsss for a total )f 75 P )iii's) arid tire

rrrrarnirrg 25 PSDFs fromn each of' thre three (lasses sorved as the test set. Thre aerosol s"ze distributions

frorri categories 4 to 11 were 'ised tL Stidy the operational properties of the trained neural network and, Inl

tairticular, to investigate, the capability of the trained network to generalize, recognize, and classify PSDFs

fir which it has riot been trained

V. NEURAL NETWORIK EXPERIMENTS

,Neural network expvriurrerits were carried out using the aerosol data sets described above. The

net works were simnulatedl ]i soft ware on a Compaq 3186/20 computer with a neural network simulator program

tliveb ped b~y California Scierntific Softwarte [It)1. 'lie experiments onl training of the neural network w, .,

N' rforrue-d with Ire smroothiinig parameter it 0.1 and thle learning rate paramet er Yj =1 .0, unless oth 'rwise

indicated. The neural net work, which consisted of 48 input neurons in the input layer, 2 output neurons in

I he outpuint layer, anid a variable numb i rer of hidden neurons Ii the hiidden layer, w as frully i nter~ on nected , viz.,

iClh Iiwnulron in tire in prit layer was con nectedl to every nieu ron in thle hidden iaver arid, iii turn, each neur on

in) thre hidden layer was connected t~o every neuron in thre output layer. Each of the 418 neurons in tire input

laye,(r was "clarnped" to the value of thle aerodynanmic particle size distribution in one of the corresponding,48

size Intervals or binls Training proceeds by presenting the PSDFs in tire training set to thre neural network

,-iIId a training cycle will refer to one presentation of all (75) PSDFs in tCre training set to the network. The

desired oujtput response of the network was chosen so that a(erosol size d istri bu t.ions inl categories 1, 2, and 3

tg,;vo out pit neunrm responses (0,1), (1,0). and (1,I), respectively. These responses identify the three pat tern

tlasses in) tire training set. Th'le Connection strengths (weights) in thre neural network were initialized with

rainidomi values drawn fronti a uini formi dist ribuition withr a ranige fromt -1. to 1 . Training of the net work with

lie- loiuk-propagatioii learning algorillhim proceeded mit i the all output responses weewithin a tolerance of

10 I) lieri of I lie desired responses.
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A set of learning curves which characterize the speed of convergence (i.e., learning speed) of the

back-propagation rule for adjusting hie weights of the( network was desired. One - alization of a set of

lariing c:urves (percent of the( mint/output pairs in tie( training set c().ectlv tiaped as a fiitictioii fif tlie

niumiber of training cycles) of the net work is shown in Fig. .1 for the( specified tnimber of hiddent neurons.

it this figure. the lit rning curves are plot tedl for iieural rietw,- ks with n =3, 5. 7, It), and 20 hiddeni

uits. Observe that thle learning rates of Ihle networks generally inicrease with it nincrease in tlie number of

ioden units since tie( utse of nmore liildtiu units provide a greater flexibility Ii tlie, network encoding process

Futrthlernmore. altlioiigli there is a significantly faster leartning rate fo(r the network with 10 hiddelln tti-o

comnparedl with tilie net work with :3 hidden neurons, trlli imtprovenient iii le:'-itiig rate do~es not sen to

(cAiitiiiie for networks wvithI more than 10 hidden utits- Indeed, the( networks with 10 and 2k) hidden units

have almtost identical iear i;:i 'jeliavior. The smooth ensemble average learing curves were oljtailietl liv

iig thle average of 20 individual lwarning curves thal correspond to the use of different ranidomly sei cted

nitial weight valuies, The re- Its ar, lpresettted in Fig. 5 or net works with Ii i 3, 5. ;in( 10 :,iddenl neurons.

iT i' effec t of the Iwarning rate, parameter q onl thle learning buhavior of the netwvork is exhibited in Fig. 6.

11* re. the( niuber of training cycles required to fully train the nrtwork is plotted against thle number of

hiidden units in the network for two values of thle leariting rate p- rameter, nanmely rl 1 .0 and I .5. As

expected,. incretsing thle learniing rate parameter results in an improvement in the learning behavior (I e.,

less training cycles are reqluiredl to train thle network) for a specified number of hidden units. However, it

is itiportant to emphasize that if q~ is chosen too large., tile back-propagation algorithlm exhibits instability

tld fails to converge properly. Also evidett ii Fig. 6 is the (decrease lin the learning rate withl atii increasew lit

ie( nuimiber of hidden units in the network.

After tilie networks were fitlly tratined, it was foi u that inpu~t, of tilie lPS1) Is Mi thle te'st Set to thle

itworks provided recognit ion accuracies of 100 percent, for all the networks tiained, viz. for networks with

iiimlwrs of hidden tieurons ratnginhg from :1 to 20. Next,, we investig;ated thle effects of noise onl thle recognition

pverformance of tilie neuiral tiet work. All the( following experiments involved neural networks withI 20 hiddell

iiiits. It is itmportanut that the network be robust itt the sense that slight to moderate p~erturb~ations intith

*,y stemn (i.e., degradatiotis in t lie cotitect iou stretigthls of tie fully t rained network) should not adversely

affect tile rerognuitioti performnance.. Tlowards this purpmo, consider, for exaiuille tOli representative result

* .li it d in, Fi8, 7. 'I'lie figure shows tie, recognition accuitracy of the nieiural net work onl the test set, after

all tilie weights itt the trained iiet work had been corrupt ed with zero- mean Gaussian tioise wi th thle stanidara

dev iat ion adj tist ed to provide thle requi redi root- neati -squ are (Wh~IS) nolk-e level. The hiMS noise level is

d#fi tied by I te ratio (r,, .c expressedl as a pi (en agewer antI T') ar'' t ie varianices iti the( noise anid

sigtual, re-spectively. Observe tHat t ho recognitinii pe'rformtancie of (,te tte.work was relatively Insenitive to

h'ittillii all t lie conliuect lo weight's till to a hNIS nloise level of about 201 hutruluit Ilov cr, after t his

tielevel. thi efiite of tilie itt work deteriorated lrt-ciitotsy withI the adlit it offijirther tuoise to)
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the weights. Furthermore, similar results were obtained when the weight- wc=_ corrupted with non-Gaussian

noise (e.g., a noise process drawn from a uniform distribution). Consequently, the neural network model is

relatively fault-tolerant to perturbations in the components of the system.

Fig. 8 exhibits the result of training the neural network with a noise corrupted training set.

'This figure shows the recoguition performance of the network on the test set after training the network on

a training set corrupted with noise at the sp-,cified level. Observe that the trained network achieved an

recognition accuracy of 100 percent for a RMS noise level of up to 10 percent on the training patterns.

After this noise level, the performance of the network monotonically decreased (albeit, rather slowly) until

it pie idldc, a ri-cognition aceuracy of 70 Iercent at the 50 percent RMS noise level. It should be noted

Il it at lese highr levels of noise degradation, the input PSDFs are no longer consistent, with the result

I hal liw network cannot b, trained to classify the training set with an accuracy of 100 percent. In fact, it

, (,,-,rv.d in tls, experiueits that the recognition accuracy of the trained network on the test set was

r,,ughly equal to the recogntitiot performance on the training set. Along the same theme, Fig. 9 depicts the

r,.ogntion performance of a trained network on the test set that has been degraded with different levels

f nolis. Note that this performance curve is remarkably similar to that in Fig. 8. Again, the recognition

rate (of the network remained at 100 percent, for up to 10 percent RMS noise level in the test set. Above

this level, the performance gradually decreased until a recognition accuracy of only 40 percent was achieved

at .55 percent RMS noise level. Along these lines, Figs. 10 arid 11 display representative output neuron

rrsponises (i.e., activation levels of output neuron 2 versus that of output neuron 1) of the trained network

to t ,t sets that have been corrupted with RMS noise at the 5 and 25 percent levels, respectively. Observe

hat th th tree categories of lPSI)Fs in the test set produced the expected clustering patterns in the output

r,.sponse space with the scatter within these clusters increasing with the noise level. In summary, the results

in Figs. 7 to I I indicate that the recognition performance of the neural network model is reasonably tolerant

1,) lgralations ii the connection weights arid to variations of PSDFs in the training and test set. We remark

I tat the insensitivity of the neural network to these forms of degradations is not surprising since it is the

inherenit parallelism and built-in redundancy embodied in the various interconnections of the network that

render this forni of computational paradigm so attractive for processing of data involving incomplete and/or

lhegradi, informat ion.

The litxt series of experimlnitt.s investigates the ability of the fully trained neural network to form

i,.at i rtgfl l gereralizationis on arosol size distributions for which it has never been trained. Specifically, we

;ir,. M1,.r,.-st,d in the ability of the trained network to function as a featuret map classifier for a number of

titaleled particle size distributions where the number of categories is unknown a priori. In the following

xperiiments, a neural network with 20 hidden units was trained on the training set and then presented with

a m1unib)1er of PSI)Fs that it. has never "seen". In Figs. 12 and 13, we show the output network response to

It cot ,ti ig of a railoi mixture of 25 PSI)Fs from each of categories I to 6 for a total of 150 PSI)Fs.
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Observe that the PSDFs from classes 1, 2, and 3 (i.e., the classes which the network was trained to recognize)

cluster in the expected positions in the output response space. Note that there is no scatter in the responses

of the network to PSDFs from classes I and 2, indicating that the PSDFs from these classes are highly

reproducible. The lPSDFs from classe -1, 5 and 6 (i.e., three classes for which the network has not been

trained) yielded clusters of points in the output response space with centroids at (0.55,0-35), (0.35,0.95), and

(1.0,0.5), respectively. It is interesting to note that the Irained network seems to have formed ineaningful

generalizations from tie training examples. In particular, PSDFs from class 4, which are composed of a

superposition of aerosols froni classes I and 2, are clustered roughly about a point in the output response

space that lies on the line connecting (0,1) (cluster point for PSDFs of class 1) and (1,0) (cluster point for

PSDFs of class 2). A similar statement can be made with respect to the centroids of the clusters for PSI)Fs

of classes 5 and 6 (mixture of aerosols from classes I and 3 and 2 and 3, respectively) which roughly lie

on the lines connecting the points (0,1) and (1,1) (cluster point for PSDFs of class 3) and (1,0) and (1,1),

respectively. Fig. 14 shows the output, response of the neural network to a set comprised of PSDFs from

class 7 which is a mixture of aerosols from classes 1, 2, and 3. The centroid of the cluster in the response

space is located at the point (0.84,0.73). Observe that this point lies within the triangle whose vertices are

(0.1). (1,0), and (1,1) which are the centroids of the clusters for PSDFs from classes 1, 2, and 3, respectively.

Next, we study the ability of the trained network to classify bacterial aerosols. Fig. 15 illustrates

the network output response to a data set composed of PSDFs from categories 1, 2, 3, 8, and 9, with each

category contributing 25 PSDFs. The PSI)Fs of classes 8 (0.6 pim PSI, particles) and 9 (Eli) produced

clusters in the response space with centroids at (0.38,0.87) and (0.11,0.90), respectively. Only one sample

PSI)F from class 9 was incorrectly placed. Next, a data set was constructed from PSI)Fs from classes 3,

9. 10, and 11 and used as input to the trained network. The output responses of thle network for this data

,-t ar ,- shown in Fig. 16. Observe that t lie network was able to separate the various clakses of I'S[)1's and

plae them in distinct clusters in the output, response space. Indeed, only 2 PS)Fs from the data set were

incorrectly placed to provide a classification accuracy of 98 percent. Of interest is the fact that the network

was able to recognize the difference in the shape of PSi)Fs between native and "clean" BG. It is hypothesized

that washing the native 1G removed extracellular material from tlie cell wall of the bacteria which resulted

in a subtle alteration in the aerodynamic properties of tie cell. This alteration produced a subtle change in

ti,, shape characteristics of the aerodynamic particle size distribution which was recognized by the traited

ti ural network. With regard to tle latter point, ti cernt roids of the clusters formed froni PSDFs of classes

10 (native BG) arid 11 ("clean" 13G) are located at (0.20,0.95) and (0.60,0.87), respectively.

As a final example, ai, experiment was conducted to study the response of the trained network

to an aerosol PSI)F that slowly evolves over a given interval of time. Towards this objective, all aerosol of

"clan" B(; was slowly slrayd into an aero.,ol chalmber and the particle size dist ribut inn of the evolving

inixt uir' im lieh chamber was mne.sur'd every :1 seconds with aii APS. A total of 1(10 I'SI)l's was measured

UNCLASSIFIED



UNCLASSIFIED 10

over a period of 300 seconds arid this suite of PSDFs provided a "spectrogram" of the evolhing PSDF in the

chamber. A data set was constructed from these 100 PSDFs and 25 PSDFs from category 3. The output

responses of the neural network to this data set are exhibited in Fig. 17. Observe that the PSDFs from class 3

ar, clustered about the expected position. The responses of the network to the PSDFs of the "spectrogram"

generally displayed an ordered trajectory of points in the response space that is indicative of an evolutionary

behavior. These points eventually clustered about the point (0.60,0.87), which coincides with the centroid of

the response cluster for "clean" BG (cf. Fig. 16). This clustering of points in the response space corresponds

to that portion of the spectrogram where the PSDFs have reached a steady-state in the aerosol chamber. At

this point, the PI)SDFs no longer change shape as a function of time.

VI. CONCLUSIONS

In this paper, we have applied a neural network model for the recognition and classification of

a number of aerosol particles (e.g., environmental, bacterial, and artificial) based on their aerodynamic

particle size distribution as measured with an Aerodynamic Particle Size analyzer. It was demonstrated

1hat a fully interconnected three-layered neural network (48 input neurons, a variable number of hidden

iturons, and 2 output neurons) with nonlinear sigmoid units for thresholding can be trained with the

standard back-propagation learning algorithm using a training set consisting of 25 PSDFs from each of three

cla.sses of aerosols (one atmospheric and two polystyrene latex particle standards). It was found that a

recogniti n rate of 100 percent can be obtained for the training set using neural networks with three or more

hidden units and that there was a monotonic increase in the learning rate (viz., a smaller number of passes

through the training data) with an increase in the number of hidden units in the network. However, it is

important to emphasize that there was virtually no increase in the learning times of the networks with more

than 10 hidden neurons. Furthermore, it is interesting to note that the performance of the networks did

not deteriorate when the number of hidden units was increased beyond 10, despite the fact that for these

nv"Norks, thr -~imher of connection weights that have to be adjusted greatly exceeded the number of training

data. In this respect, the back-propagation rule appears to be stable for underdetermined problems. After

training, the connection weights were frozen at their final values and a further pass through the test data

set consisting of 25 PSDFs from each of the same three classes of aerosols represented in the training set,

yielded a 100 percent recognition rate. Evidently, the trained network has properly encoded the significant

characteristic features in the PSDFs to permit effective recognition and classification of these three aerosol

reLasses.

Experiments were conducted to study the performance characteristics of the neural network as a

lunction of the quality of data used for the training set and the test set and of the inclusion of random noise in

fli, cornnection strengths of the trained network. Firstly, it was found that the neural network is structurally

robust in the sense that deviations in the connection weights (i.e., up to about 20 percent RMS noise in all
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the weights) (did not adversely affect the recognition accuracy of a fully trained network. Consequently, the

neural network paradigm, with its high degree of parallelism and redundancy in interconnect ions between

neurons, functions as a very fault-tolerant pattern recognition and classification system. Secondly, it was

found that the neural network was robust with respect to the type and level of noise corrupting the data in

bth the training and test sets. In this regard, the neural network was able to perform adequately in the

face of uncertainties introduced as the result of undesirable disturbances in the data. This is in contrast

to all statistical techniques for pattern classification which are invariably affected by noise type and level.

Consequently, the neural network model is more suited for classification of signals from systems where one

is confronted with ignorance of the statistical characteristics of the noise corrupting the signals.

After the neural network has been fi, ly trained, it was shown that the network was capable of

forming reliable generalizations to 'Sl)Fs that, it has never "seen". In other words, a properly trained neural

network can be used to rapidly characterize and classify airborne environmental, chemical and biological,

and artificial aerosols with a high accuracy rate. Indeed, it was demonstrated that a neural network that

was trained to recognize and classify only three categories of aerosols can be used effectively to classify

aerosols from eight other categories for which it has never been trained. It was shown thatr the aerosols

from these eight categories produced separable clusters in the output response space of the trained network.

Consequently, the trained network was shown to be able to group PSI)Fs of unknown type into similiar

categories for the case where the number of cluster categories was unknowni a priori. Indeed, for a properly

trained neural network, cluster classification accuracies of better than 98 percent were obtained for all eight

aerosol classes utilized. This rather surprising classification performance on unknown PSDFs indicates that

the trained network had properly encoded the characteristic features of the PSI)Fs of the training set in the

connection strengths and had been able to generalize this encoding to extract characteristic features in the

un known PSJ)Fs and to use this iiformation to form appropriate cluster categories for the PSI)IVs in the

outp u t response space. II view of this, a properly traie(d neural network coupled to an A PS p)rovides one

possibility of recognizing, characterizing, and classifying aerosol particles iii real-t iuie.
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TABLE I

Summary of class notation used for aerosol size distributions.

Aerosol particle descriptor Numerical assignment

PSL particles (1 pim) I

PSL particles (3 vn,) 2

Atmospheric 3

PSL particles (1 and 3 pm) 4

PSL particles (1 pm) and atmospheric 5

PSL particles (3 pm) and atmospheric 6

PSL particles (1 and 3 pim) and atmospheric 7

PSL particles (0.6 pmn) 8

Erivinia herbicola (2.5 x 0.5 pm) 9

Native Bacillus sublilus var. globigii (1.5 x 0.5 pm) 10

-(-lean" Bacillus subtilus var. globigiz (1.5 x 0.5 pim) 11
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Schematic of the architecture of a feedforward three-layered neural network.
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C4

FIGURE 2

The components of a single processirg unit (neuron).
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FIGURE 3

Thp sigmoid function with unit gain that serves as the threshold or activation function for a neuron.
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FIGURE 4

)nc re;lization of learning cuirves for neural networks with 3, 5, 7, 10, and 20 hidden neurons.
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FIGURE 5

1Lnserrnble average learning cuIrve~s coiist ric ed from 20 individual realizations of learning curves for networks
with i.3, 5, and 10 hidden neuronls.
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FIGURE 6

Nmiid,'r of traifiig cycles v'rsis Ilc niumber of hidden units for two values of the learning rate parameter

U .
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R1crognition arrulrarv oii theI test set versuis the RMS level of noise corrupting all weights of a trained network
with 20 hidden units
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FIGURE 8

I,.'ogniition perfornmance of a neural network on the test, set. The network was trained on the training set
corrupted with a prescribed RNIS level of noise.
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FIGURE 9

Recognition performance of a trained neural network on the test set that has been corrupted with the
prescribed RMS level of noise.
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FIGURE 10

(M llu r('iral network responses to the test set thal has been corrupted at, 5 percent. RMS noise level.
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FIGURE 11

Output neural network responses to the test set that has been corrupted at 25 percent RMS noise level.
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FIGURE 12

Otitput neural network responses to a data set consisting of a mixture of 25 PSDFs from each of categories
I to 6. This figure only displays the responses of PSDFs in catcgories 1 to 5.
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FIGURE 13

Output neural network responses to a data set consisting of a mixture of 25 PSDFs from each of categories
I to 6. This figure only displays the responses of PSDFs in categories 1, 2, 3, and 6.
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FIGURE 14

Outiput neural network responses to a data set consisting of a mixture of 25 PSDFs from each of categories
1, 2, :3, and 7.
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FIGURE 15

Output neural network responses to a data set consisting of a mixture of 25 PSDFs from each of categories
1, 2, 3, 8, and 9.
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FIGURE 16

Output neural network responses to a data set consisting of a mixture of 25 PSDFs from each of categories
3, 9, 0 and 1).
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FIGURE 17

Output neural network responses to a data set consisting of a suite of 100 evolutionary PSDFs corresponding
to the "spectrogram" from the aerosolization of Bacillus sublilus var. globigii in an aerosol chamber and of
25 PSDFs from category 3.
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i ,Ir;niiiiig si't, the test set, and the connection weights onl the learning rate and classification (Ilicielicy ()f

t iiiral tiet work are studiied. T[he ability of' thle t rainied network to genteralize from thii finite iiiiiliber 'if

.1" disi ribut ions in the tr rat mug set to unknown size dist ribut ions obtained froin uncertain and iiifaimiilliar

iiroinienrts is Investigate 'The approach ofle-rs the opportunity of rec:ognizing, classifying, and cliarac-

friling aerosol particles ill real-timec according to their aerodynamic particle size spectrumi and its li-i'h

rcigu iitioni accuracy shows considerable promise for applications to rapid real-tlime air inoititoring in) lhoi

iras of occ upational health and air 1)011111 ion standards.

4 KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document They should be selected so that no security classification is required. Identifiers, such as equipment
model designation, trade name. military project code name, geographic location may also be included. If possible keywords should be selected

rom a published thiesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus- identified If it is not pcssible to
select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

NEURP.T NETWORK
,ATTERN RECOGNITION (ADAPTIVE)
i-RGPYNAMIC PARTICLE -TZE DISTRIBUTION
;PACT:ERTAL AEROSOLS
()JPT -A. PARTICLE SI-IN
EACK-PROPAGATION LEARNING ALGORITHM
(;O0MMECTTOt!TST ARCHITECTURES
PARALLEIL DISTRIBUTED PROCESSING

UNCLASSIFIED


